Enumerating indices of Schubert varieties defined by inclusions

نویسندگان

  • Michael H. Albert
  • Robert Brignall
چکیده

By extending the notion of grid classes to include infinite grids, we establish a structural characterisation of the simple permutations in Av(4231, 31524, 42513, 351624), a pattern class which has three different connections with algebraic geometry, including the specification of indices of Schubert varieties defined by inclusions. This characterisation leads to the enumeration of the class.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which Schubert varieties are local complete intersections?

We characterize by pattern avoidance the Schubert varieties for GLn which are local complete intersections (lci). For those Schubert varieties which are local complete intersections, we give an explicit minimal set of equations cutting out their neighborhoods at the identity. Although the statement of our characterization only requires ordinary pattern avoidance, showing that the Schubert varie...

متن کامل

Cohomology of line bundles on Schubert varieties in the Kac-Moody setting

In this paper, we describe the indices of the top and the least nonvanihing cohomologies H (X(w), Lλ) of line budles on Schubert varieties X(w) given by nondominant weights in the Kac-Moody setting. We also prove some surjective Theorem for maps between some cohomology modules.

متن کامل

Rigidity of Schubert Classes in Orthogonal Grassmannians

A Schubert class σ in the cohomology of a homogeneous variety X is called rigid if the only projective subvarieties of X representing σ are Schubert varieties. A Schubert class σ is called multi rigid if the only projective subvarieties representing positive integral multiples of σ are unions of Schubert varieties. In this paper, we discuss the rigidity and multi rigidity of Schubert classes in...

متن کامل

Hessenberg Varieties Are Not Pure Dimensional

We study a family of subvarieties of the flag variety defined by certain linear conditions, called Hessenberg varieties. We compare them to Schubert varieties. We prove that some Schubert varieties can be realized as Hessenberg varieties and vice versa. Our proof explicitly identifies these Schubert varieties by their permutation and computes their dimension. We use this to answer an open quest...

متن کامل

The Recursive Nature of Cominuscule Schubert Calculus

The necessary and sufficient Horn inequalities which determine the nonvanishing Littlewood-Richardson coefficients in the cohomology of a Grassmannian are recursive in that they are naturally indexed by non-vanishing Littlewood-Richardson coefficients on smaller Grassmannians. We show how non-vanishing in the Schubert calculus for cominuscule flag varieties is similarly recursive. For these var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013